

attotime

High precision datetime implementation for Python

Features

	Fractional nanosecond resolution using Python decimal [https://docs.python.org/2/library/decimal.html] module

	API as close to Python’s native datetime [https://docs.python.org/2/library/datetime.html] implementation as possible

	Python 3 support

attotimedelta

attotimedelta objects represent the difference between two dates or times. It wraps a native timedelta [https://docs.python.org/2/library/datetime.html#timedelta-objects] object, and stores fractional nanoseconds as a Decimal.

class attotime.attotimedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks[, nanoseconds]]]]]]]])

All arguments are optional and default to 0. All arguments may be ints, longs, or floats, and may be positive or negative.

Only days, seconds, microseconds, and nanoseconds are stored internally. days, seconds, and microseconds are stored in a native timedelta object, nanoseconds are contained in a Decimal.

Instance attributes (read-only)

	days Between -999999999 and 999999999 inclusive.

	seconds Between 0 and 86399 inclusive.

	microseconds Between 0 and 999999 inclusive.

	nanoseconds A Decimal between 0 and 999 inclusive.

Supported operations

	td1 = td2 + td3 Sum of td2 and td3.

	td1 = td2 - td3 Difference of td2 and td3.

	td1 = i * td2 or td1 = td2 * i Delta multiplied by an integer, long, float, or Decimal.

	td1 = td2 // i Computes the floor, discarding the remainder.

	+td1 Returns an attotimedelta with the same value.

	-td1 Equivalent to td1 * -1.

	abs(td1) Equivalent to +td1 when td1.days >= 0, -td1 when t1.days < 0.

	str(td1) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU], where D is negative for td1 < 0 and UUUUUU can be expanded for up to 16 place fixed point.

	repr(td1) Returns a string in the form attotime.objects.attotimedelta(D[, S[, U]]), where D is negative for td1 < 0.

Instance methods

attotimedelta.total_seconds()

Return the total number of seconds contained in the duration as a Decimal.

attotimedelta.total_nanoseconds()

Return the total number of nanoseconds contained in the duration as a Decimal.

attodatetime

attodatetime is a single object wrapping a native date [https://docs.python.org/2/library/datetime.html#date-objects] object and an attotime object for the purposes of storing date and time information with fractional nanoseconds stored as a Decimal.

class attotime.attodatetime(year, month, day[, hour[, minute[, second[, microsecond[, nanosecond[, tzinfo]]]]]])

Year, month, and day are required. tzinfo may be None, or an instance of a tzinfo subclass [https://docs.python.org/2/library/datetime.html#tzinfo-objects]. The nanosecond argument may be a float or Decimal. The remaining arguments may be ints or longs.

Class methods

attodatetime.today()

Return the current local datetime, with tzinfo None. This is equivalent to attodatetime.fromtimestamp(time.time()).

attodatetime.now([tz])

Return the current local date and time. If optional argument tz is None this is like today().

If tz is not None, it must be an instance of a tzinfo subclass, and the current date and time are converted to tz’s time zone.

attodatetime.utcnow()

Return the current UTC date and time, with tzinfo None.

attodatetime.fromtimestamp(timestamp, [tz])

Return the local date and time corresponding to the POSIX timestamp, such as returned by time.time(). If optional argument tz is None or not specified, the timestamp is converted to the platform’s local date and time, and the returned attodatetime object is naive.

If tz is not None, it must be an instance of a tzinfo subclass, and the timestamp is converted to tz’s time zone. The returned attodatetime’s tzinfo is set to the provided tz.

attodatetime.utcfromtimestamp(timestamp)

Return the UTC attodatetime corresponding to the POSIX timestamp, with tzinfo None.

attodatetime.fromordinal(ordinal)

Return an attodatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal() (note native Python datetime range checking). The hour, minute, second and microsecond of the result are all 0, and tzinfo is None.

attodatetime.combine(date, time)

Return an attodatetime object whose date components are equal to the given date object’s, and whose time components and tzinfo attributes are equal to the given time object’s. If date is a attodatetime (or native Python datetime), its time components and tzinfo attributes are ignored.

attodatetime.strptime(date_string, format)

Return an attodatetime corresponding to date_string, parsed according to format. Only the directives explicitly listed in the strftime() and strptime() Behavior [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] section of the Python documentation are supported, as well as the following:

	Directive

	Meaning

	Example

	%o

	Picosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

	%q

	Attosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

	%v

	Yoctosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

Instance attributes (read-only)

	year Between Python native datetime MINYEAR and MAXYEAR, inclusive.

	month Between 1 and 12 inclusive.

	day Between 1 and the number of days in the given month of the given year.

	hour In range(24).

	minute In range(60).

	second In range(60).

	microsecond In range(1000000).

	nanosecond In range(1000), as Decimal.

	tzinfo The object passed as the tzinfo argument to the attodatetime constructor, or None if none was passed.

Supported operations

	dt2 = dt1 + td dt1 moved forward the duration of the attotimedelta if attotimedelta.days > 0, or backward if attotimedelta.days < 0.

	dt2 = dt1 - td dt1 moved backward the duration of the attotimedelta if attotimedelta.days > 0, or forward if attotimedelta.days < 0.

	td = dt1 - dt2 The duration of time between dt1 and dt2, as an attotimedelta.

	dt1 < dt2 dt1 is considered less than dt2 if dt1 precedes dt2 in time.

	str(dt1) Equivalent to dt1.isoformat(separator=' ').

	repr(dt1) Returns a string in the form attotime.objects.attodatetime(Y, M, D, h, m, s, us, ns, [tz]).

Instance methods

attodatetime.date()

Return a date object with same year, month and day.

attodatetime.time()

Return an attotime object with the same hour, minute, second, microsecond, and nanosecond. tzinfo is None.

attodatetime.timetz()

Return an attotime object with the same hour, minute, second, microsecond, nanosecond, and tzinfo attributes.

attodatetime.replace([year[, month[, day[, hour[, minute[, second[, microsecond[, nanosecond[, tzinfo]]]]]]]]])

Return an attodatetime object with the same attributes, except for those attributes given new values by whichever keyword arguments are specified. Note that tzinfo=None can be specified to create a naive attodatetime from an aware attodatetime with no conversion of date and time data.

attodatetime.astimezone(tz)

Return an attodatetime object with new tzinfo attribute tz, adjusting the date and time data so the result is the same UTC time as self, but in tz’s local time.

A ValueError is raised if self is naive.

attodatetime.utcoffset()

If tzinfo is None, returns None, else return self.tzinfo.utcoffset(self) as an attotimedelta.

attodatetime.dst()

If tzinfo is None, returns None, else return self.tzinfo.dst(self) as an attotimedelta.

attodatetime.tzname()

If tzinfo is None, returns None, else returns self.tzinfo.tzname(self).

attodatetime.timetuple()

Return the result of datetime.timetuple() [https://docs.python.org/2/library/datetime.html#datetime.datetime.timetuple] for a native Python datetime matching the attodatetime. Nanosecond precision is lost.

attodatetime.utctimetuple()

Return the result of datetime.utctimetuple() [https://docs.python.org/2/library/datetime.html#datetime.datetime.utctimetuple] for a native Python datetime matching the attodatetime. Nanosecond precision is lost.

attodatetime.toordinal()

Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

attodatetime.weekday()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date().weekday().

attodatetime.isoweekday()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date().isoweekday().

attodatetime.isocalendar()

Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().isocalendar().

attodatetime.isoformat([sep])

Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed) hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0 YYYY-MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default ‘T’) is a separator, placed between the date and time portions of the result.

The decimal second component may be expanded up to 16 place fixed point.

attodatetime.ctime()

Return the result of datetime.ctime() [https://docs.python.org/2/library/datetime.html#datetime.datetime.ctime] for a native Python datetime matching the attodatetime. Nanosecond precision is lost.

attodatetime.strftime(format)

Return a string representing the date and time, controlled by an explicit format string. Only the directives explicitly listed in the strftime() and strptime() Behavior [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] section of the Python documentation are supported, as well as the following:

	Directive

	Meaning

	Example

	%o

	Picosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

	%q

	Attosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

	%v

	Yoctosecond as a decimal
number, zero-padded on
the left.

	000000, 000001, …, 999999

attotime

attotime is an object wrapping a native time [https://docs.python.org/2/library/datetime.html#time-objects] object along with fractional nanoseconds stored as a Decimal.

class attotime.attotime([hour[, minute[, second[, microsecond[, nanosecond[, tzinfo]]]]]])

All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass [https://docs.python.org/2/library/datetime.html#tzinfo-objects]. The nanosecond argument may be float or Decimal. The remaining arguments may be ints or longs.

Instance attributes (read-only)

	hour In range(24).

	minute In range(60).

	second In range(60).

	microsecond In range(1000000).

	nanosecond In range(1000), as Decimal.

	tzinfo The object passed as the tzinfo argument to the attotime constructor, or None if none was passed.

Supported operations

	t1 < t2 t1 is considered less than t2 if t1 precedes t2 in time.

	str(t1) Equivalent to t1.isoformat().

	repr(t1) Returns a string in the form attotime.objects.attotime(h, m, s, us, ns, [tz]).

Instance methods

attotime.replace([hour[, minute[, second[, microsecond[, nanosecond[, tzinfo]]]]]])

Return an attotime object with the same attributes, except for those attributes given new values by whichever keyword arguments are specified. Note that tzinfo=None can be specified to create a naive attotime from an aware attotime with no conversion of date and time data.

attotime.isoformat()

Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if microsecond is 0, HH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0 HH:MM:SS+HH:MM

The decimal second component may be expanded up to 16 place fixed point.

attotime.strftime(formatstr)

Raises NotImplementedError

attotime.utcoffset()

If tzinfo is None, returns None, else return self.tzinfo.utcoffset(self) as an attotimedelta.

attotime.dst()

If tzinfo is None, returns None, else return self.tzinfo.dst(self) as an attotimedelta.

attotime.tzname()

If tzinfo is None, returns None, else returns self.tzinfo.tzname(self).

Development

Setup

It is recommended to develop using a virtualenv [https://virtualenv.pypa.io/en/stable/].

The tests require the dev feature to be enabled, install the necessary dependencies using pip:

$ pip install .[dev]

Tests

Tests can be run using setuptools <https://setuptools.readthedocs.io/en/latest/setuptools.html>:

$ python setup.py test

Contributing

attotime is an open source project hosted on Bitbucket [https://bitbucket.org/nielsenb/attotime].

Any and all bugs are welcome on our issue tracker [https://bitbucket.org/nielsenb/attotime/issues]. Of particular interest are places where the attotime implementation incorrectly deviates from native Python behavior. Pull requests containing unit tests or fixed bugs are always welcome!

References

	PEP 410 which describes the need for high precision time types [https://www.python.org/dev/peps/pep-0410/]

	Bug report with implementation of PEP 410 [https://bugs.python.org/issue13882]

	Bug report discussing loss of precision when parsing ISO8601 timestamps [https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is]

Index

 nav.xhtml

 Table of Contents

 		
 attotime

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

